Tuesday, 6 September 2016

Benefits of Ruby over Python & R for Web Scraping

Benefits of Ruby over Python & R for Web Scraping

In this data driven world, you need to be constantly vigilant, as information and key data for an organization keeps changing all the while. If you get the right data at the right time in an efficient manner, you can stay ahead of competition. Hence, web scraping is an essential way of getting the right data. This data is crucial for many organizations, and scraping technique will help them keep an eye on the data and get the information that will benefit them further.

Web scraping involves both crawling the web for data and extracting the data from the page. There are several languages which programmers prefer for web scraping, the top ones are Ruby, Python & R. Each language has its own pros and cons over the other, but if you want the best results and a smooth flow, Ruby is what you should be looking for.

Ruby is very good at production deployments and using Ruby, Redis & Chef have proven to be a great combination. String manipulation in Ruby is very easy because it is based on Perl syntax. Also, Ruby is great for analyzing web pages using  one of the very powerful gems called Nokogiri. Nokogiri is much easier to use as compared to other packages and libraries used by R and Python respectively. Nokogiri can deal with broken HTML / HTML fragments easily. Ruby also has many extensions, such as Sanitize and Loofah, that can help clean up broken HTML.

Python programmers widely use a library called Beautiful Soup for pulling data out of HTML & XML files. It works with your favorite parser to provide idiomatic ways of navigating, searching, and modifying the parse tree. It commonly saves programmers hours or days of work. R programmers have a new package called rvest that makes it easy to scrape data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces.

To help you understand it more effectively, below is a comprehensive infographic for the same.

Ruby is far ahead of Python & R for cloud development and deployments.  The Ruby Bundler system is just great for managing and deploying packages from Github. Using Chef, you can start up and tear down nodes on EC2, at will, and monitor for failures,  scale up or down, reset your IP addresses, etc. Ruby also has great testing frameworks like Fakeweb and Capybara, making it almost trivial to build a great suite of unit tests and to include advanced features, like crawling  and scraping using webkit / selenium. 

The only disadvantage to Ruby is lack of machine learning and NLP toolkits, making it much harder to emulate the capacity of a tool like Pattern.  It can still be done, however, since most of the heavy lifting can be done asynchronously using Unix tools like liblinear or vowpal wabbit.

Conclusion

Each language has its plus point and you can pick the one which you are most comfortable with. But if you are looking for smooth web scraping experience, then Ruby is the best option. That has been our choice too for years at PromptCloud for the best web scraping results. If you have any further questions about this, then feel free to get in touch with us.

Source: https://www.promptcloud.com/blog/benefits-of-ruby-for-web-scraping

Monday, 29 August 2016

How to use Social Media Scraping to be your Competitors’ Nightmare

How to use Social Media Scraping to be your Competitors’ Nightmare

Big data and competitive intelligence have been in the limelight for quite some time now. The almost magical power of big data to help a company make just the right decisions have been talked about a lot. When it comes to big data, the kind of benefits that a business can get totally depends upon the sources they acquire it from. Social media is one of the best sources from where you can get data that helps your business in a multitude of ways. Now that every business is deep rooted on the internet, social media data becomes all the more relevant and crucial. Here is how you can use data scraped from social media sites to get an edge in the competition.

Keeping watch on your competitors

Social media is the best place to watch your competitors’ activity and take counter initiatives to keep up or take over them. If you want to know what your competitors are up to, a social media scraping setup for scraping the posts that mention your competitors’ brand/product names can do the trick. This can also be used to learn a thing or two from their activities on social media so that you can take respective measures to stay ahead of them. For example, you could know if your competitor is running a special promotional offer at the moment and come up with something better than theirs to keep up. This can do wonders if you are in a highly competitive industry like Ecommerce where the competition is intense. If you are not using some help from web scraping technology to keep a close watch on your competitors, you could easily get left over in this fast-paced business scene.

Solving customer issues at the earliest

Customers are vocal about their experience with different products and services on social media sites these days. If you have a customer whose issue was left unsolved, there is a good chance that he/she will take it to the social media to vent the frustration. Watching out for such instances and giving them prompt support should be something you should do if you want to retain these customers and stop them from ruining your brand’s image. By scraping social media sites for posts that mention your product/service, you can easily find out if there are such grievances from customers. This can make sure to an extent that you don’t let unhappy customers stay that way, which eventually hurts your business in the long run. Customers can make or break your company, so using social media scraping to serve the customers better can help you succeed eventually.

Sentiment analysis

Social media data can play a good job at helping you understand user sentiments. With the help of social media scraping, a business can get the big picture about general perception of their brand by their users. This can go a long way since this level of feedback can help you fix unnoticed issues with your company and service quickly. By rectifying them, you can make your brand more appealing to the customers. Sentiment analysis will provide you with the opportunity to transform your business into how customers want it to be. Social media scraping is the one and only way to have access to this user sentiment data which can help you optimize your business for the customers.

Web crawling for social media data

When social media data possess so much value to businesses, it makes sense to look for efficient ways to gather and use this data. Manually scrolling through millions of tweets doesn’t make sense, this is why you should use social media scraping to aggregate the relevant data for your business. Besides, web scraping technologies make it possible to handle huge amounts of data with ease. Since the size of data is huge when it comes to business related requirements, web scraping is the only scalable solution worth considering. To make things even simpler, there are reliable web scraping solutions that offer social media scraping services for brand monitoring.

Bottom line

Since social media has become an integral part of online businesses, the data available on these sites possess immense value to companies in every industry. Social media scraping can be used for brand monitoring and gaining competitive intelligence that can be used to optimize your business model for maximum effectiveness. This will in turn make your company stand out from the competition and the added advantage of insights gained from social media data will help you to take over your competitors.

Source: https://www.promptcloud.com/blog/social-media-scraping-for-competitive-intelligence

Monday, 8 August 2016

How to Scrape a Website into Excel without programming

How to Scrape a Website into Excel without programming

This web scraping tutorial will teach you visually step by step how to scrape or extract or pull data from websites using import.io(Free Tool) without programming skills into Excel.

Personally, I use web scraping for analysing my competitors’ best-performing blog posts or content such as what blog posts or content received most comments or social media shares.

In this tutorial,We will scrape the following data from a blog:

    All blog posts URLs.
    Authors names for each post.
    Blog posts titles.
    The number of social media shares each post received.

Then we will use the extracted data to determine what are the popular blog posts and their authors,which posts received much engagement from users through social media shares and on page comments.

Let’s get started.

Step 1:Install import.io app

The first step is to install import.io app.A free web scraping tool and one of the best web scraping software.It is available for Windows,Mac and Linux platforms.Import.io offers advanced data extraction features without coding by allowing you to create custom APIs or crawl entire websites.

After installation, you will need to sign up for an account.It is completely free so don’t worry.I will not cover the installation process.Once everything is set correctly you will see something similar to the window below after your first login.

Step 2:Choose how to scrape data using import.io extractor

With import.io you can do data extraction by creating custom APIs or crawling the entire websites.It comes equipped with different tools for data extraction such as magic,extractor,crawler and connector.

In this tutorial,I will use a tool called “extractor” to create a custom API for our data extraction process.

To get started click the “new” red button on the right top of the page and then click “Start Extractor” button on the pop-up window.

After clicking  “Start Extractor” the Import.io app internal browser window will open as shown below.

Step 3:Data scraping process

Now after the import.io browser is open navigate to the blog URL you want to scrape data from. Then once you already navigated to the target blog URL turn on extraction.In this tutorial,I will use this blog URL bongo5.com  for data extraction.

You can see from the window below I already navigated to www.bongo5.com but extraction switch is still off.

Turn extraction switch “ON” as shown in the window below and move to the next step.

Step 4:Training the “columns” or specifying the data we want to scrape

In this step,I will specify exactly what kind of data I want to scrape from the blog.On import.io app specifying the data you want to scrape is referred to as “training the columns”.Columns represent the data set I want to scrape(post titles,authors’ names and posts URLs).

In order to understand this step, you need to know the difference between a blog page and a blog post.A page might have a single post or multiple posts depending on the blog configuration.

A blog might have several blog posts,even hundreds or thousands of posts.But I will take only one session to train the “extractor” about the data I want to extract.I will do so by using an import.io visual highlighter.Once the data extraction is turned on the-the highlighter will appear by default.

I will do the training session for a single post in a single blog page with multiple posts then the extractor will extract data automatically for the remaining posts on the “same” blog page.
Step 4a:Creating “post_title” column

I will start by renaming “my_column” into the name of the data I want to scrape.Our goal in this tutorial is to scrape the blog posts titles,posts URLs,authors names and get social statistics later so I will create columns for posts titles,posts URLs,authors names.Later on, I will teach you how to get social statistics for the post URLs.

After editing “my_column” into “post_title” then point the mouse cursor over to any of the Posts title on the same blog page and the visual highlighter will automatically appear.Using the highlighter I can select the data I want to extract.

You can see below I selected one of the blog post titles on the page.The rectangular box with orange border is the visual highlighter.

The app will ask you how is the data arranged on the page.Since I have more than one post in a single page then you have rows of repeating data.This blog is having 25 posts per page.So you will select “many rows”.Sometimes you might have a single post on a page for that case you need to select “Just one row”.

Source: http://nocodewebscraping.com/web-scraping-for-dummies-tutorial-with-import-io-without-coding/

Thursday, 4 August 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Saturday, 30 July 2016

Scraping LinkedIn Public Profiles for Fun and Profit

Scraping LinkedIn Public Profiles for Fun and Profit

Reconnaissance and Information Gathering is a part of almost every penetration testing engagement. Often, the tester will only perform network reconnaissance in an attempt to disclose and learn the company's network infrastructure (i.e. IP addresses, domain names, and etc), but there are other types of reconnaissance to conduct, and no, I'm not talking about dumpster diving. Thanks to social networks like LinkedIn, OSINT/WEBINT is now yielding more information. This information can then be used to help the tester test anything from social engineering to weak passwords.

In this blog post I will show you how to use Pythonect to easily generate potential passwords from LinkedIn public profiles. If you haven't heard about Pythonect yet, it is a new, experimental, general-purpose dataflow programming language based on the Python programming language. Pythonect is most suitable for creating applications that are themselves focused on the "flow" of the data. An application that generates passwords from the employees public LinkedIn profiles of a given company - have a coherence and clear dataflow:

(1) Find all the employees public LinkedIn profiles → (2) Scrap all the employees public LinkedIn profiles → (3) Crunch all the data into potential passwords

Now that we have the general concept and high-level overview out of the way, let's dive in to the details.

Finding all the employees public LinkedIn profiles will be done via Google Custom Search Engine, a free service by Google that allows anyone to create their own search engine by themselves. The idea is to create a search engine that when searching for a given company name - will return all the employees public LinkedIn profiles. How? When creating a Google Custom Search Engine it's possible to refine the search results to a specific site (i.e. 'Sites to search'), and we're going to limit ours to: linkedin.com. It's also possible to fine-tune the search results even further, e.g. uk.linkedin.com to find only employees from United Kingdom.

The access to the newly created Google Custom Search Engine will be made using a free API key obtained from Google API Console. Why go through the Google API? because it allows automation (No CAPTCHA's), and it also means that the search-result pages will be returned as JSON (as oppose to HTML). The only catch with using the free API key is that it's limited to 100 queries per day, but it's possible to buy an API key that will not be limited.

Scraping the profiles is a matter of iterating all over the hCards in all the search-result pages, and extracting the employee name from each hCard. Whats is a hCard? hCard is a micro format for publishing the contact details of people, companies, organizations, and places. hCard is also supported by social networks such as Facebook, Google+, LinkedIn and etc. for exporting public profiles. Google (when indexing) parses hCard, and when relevant, uses them in search-result pages. In other words, when search-result pages include LinkedIn public profiles, it will appear as hCards, and could be easily parsed.

Let's see the implementation of the above:

#!/usr/bin/python
#
# Copyright (C) 2012 Itzik Kotler
#
# scraper.py is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# scraper.py is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with scraper.py.  If not, see <http://www.gnu.org/licenses/>.

"""Simple LinkedIn public profiles scraper that uses Google Custom Search"""

import urllib
import simplejson


BASE_URL = "https://www.googleapis.com/customsearch/v1?key=<YOUR GOOGLE API KEY>&cx=<YOUR GOOGLE SEARCH ENGINE CX>"


def __get_all_hcards_from_query(query, index=0, hcards={}):

    url = query

    if index != 0:

        url = url + '&start=%d' % (index)

    json = simplejson.loads(urllib.urlopen(url).read())

    if json.has_key('error'):

        print "Stopping at %s due to Error!" % (url)

        print json

    else:

        for item in json['items']:

            try:

                hcards[item['pagemap']['hcard'][0]['fn']] = item['pagemap']['hcard'][0]['title']

            except KeyError as e:

                pass

        if json['queries'].has_key('nextPage'):

            return __get_all_hcards_from_query(query, json['queries']['nextPage'][0]['startIndex'], hcards)

    return hcards


def get_all_employees_by_company_via_linkedin(company):

    queries = ['"at %s" inurl:"in"', '"at %s" inurl:"pub"']

    result = {}

    for query in queries:

        _query = query % company

        result.update(__get_all_hcards_from_query(BASE_URL + '&q=' + _query))

    return list(result)

Replace <YOUR GOOGLE API KEY> and <YOUR GOOGLE SEARCH ENGINE CX> in the code above with your Google API Key and Google Search Engine CX respectively, save it to a file called scraper.py, and you're ready!

To kick-start, here is a simple program in Pythonect (that utilizes the scraper module) that searchs and prints all the Pythonect company employees full names:

"Pythonect" -> scraper.get_all_employees_by_company_via_linkedin -> print

The output should be:

Itzik Kotler

In my LinkedIn Profile, I have listed Pythonect as a company that I work for, and since no one else is working there, when searching for all the employees of Pythonect company - only my LinkedIn profile comes up.
For demonstration purposes I will keep using this example (i.e. "Pythonect" company, and "Itzik Kotler" employee), but go ahead and replace Pythonect with other, more popular, companies names and see the results.

Now that we have a working skeleton, let's take its output and start crunching it. Keep in mind that every "password generation forumla" is merely a guess. The examples below are only a sampling of what can be done. There are, obviously many more possibilities and you are encouraged to experiment. But first, let's normalize the output - this way it's going to be consistent before operations are performed on it:

"Pythonect" -> scraper.get_all_employees_by_company_via_linkedin -> string.lower(''.join(_.split()))

The normalization procedure is short and simple: convert the string to lowercase and remove any spaces, and so the output should be now:

itzikkotler

As for data manipulation, out of the box (Thanks to The Python Standard Library) we've got itertools and it's combinatoric generators. Let's start by applying itertools.product:

"Pythonect" -> scraper.get_all_employees_by_company_via_linkedin -> string.lower(''.join(_.split())) -> itertools.product(_, repeat=4) -> print

The code above will generate and print every 4 characters password from the letters: i, t, z, k, o, t, l , e, r. However, it won't cover passwords with uppercase letters in it. And so, here's a simple and straightforward implementation of a cycle_uppercase function that cycles the input letters yields a copy of the input with letter in uppercase:

def cycle_uppercase(i):
    s = ''.join(i)
    for idx in xrange(0, len(s)):
        yield s[:idx] + s[idx].upper() + s[idx+1:]

To use it, save it to a file called itertools2.py, and then simply add it to the Pythonect program after the itertools.product(_, repeat=4) block, as follows:

"Pythonect" -> scraper.get_all_employees_by_company_via_linkedin \
    -> string.lower(''.join(_.split())) \
        -> itertools.product(_, repeat=4) \
            -> itertools2.cycle_uppercase \
                -> print

Now, the program will also cover passwords that include a single uppercase letter in it. Moving on with the data manipulation, sometimes the password might contain symbols that are not found within the scrapped data. In this case, it is necessary to build a generator that will take the input and add symbols to it. Here is a short and simple generator implemented as a Generator Expression:

[_ + postfix for postfix in ['123','!','$']]

To use it, simply add it to the Pythonect program after the itertools2.cycle_uppercase block, as follows:

"Pythonect" -> scraper.get_all_employees_by_company_via_linkedin \
    -> string.lower(''.join(_.split())) \
        -> itertools.product(_, repeat=4) \
            -> itertools2.cycle_uppercase \
                -> [_ + postfix for postfix in ['123','!','$']] \
                    -> print

The result is that now the program adds the strings: '123', '!', and '$' to every generated password, which increases the chances of guessing the user's right password, or not, depends on the password :)

To summarize, it's possible to take OSINT/WEBINT data on a given person or company and use it to generate potential passwords, and it's easy to do with Pythonect. There are, of course, many different ways to manipulate the data into passwords and many programs and filters that can be used. In this aspect, Pythonect being a flow-oriented language makes it easy to experiment and research with different modules and programs in a "plug and play" manner.

Source:http://blog.ikotler.org/2012/12/scraping-linkedin-public-profiles-for.html

Monday, 11 July 2016

Extract Data from Multiple Web Pages into Excel using import.io

In this tutorial, i will show you how to extract data from multiple web pages of a website or blog and save the extracted data into Excel spreadsheet for further processing.There are various methods and tools to do that but I found them complicated and I prefer to use import.io to accomplish the task.Import.io doesn’t require you to have programming skills.The platform is quite powerful,user-friendly with a lot of support online and above all FREE to use.

You can use the online version of their data extraction software or a desktop application.The online version will be covered in this tutorial.

Let us get started.

Step 1:Find a web page you want to extract data from.
You can extract data such as prices, images, authors’ names, addresses,dates etc

Step 2:Enter the URL for that web page into the text box here and click “Extract data”.

Then click  “Extract data” Import.io will transform the web page into data in seconds.Data such as authors,images,posts published dates and posts title will be pulled from the web page as shown in the image below.

Import.io extracted only 40 posts or articles from the first page of the blog!.
If you visit bongo5.com you will notice that the web page is having a total of 600+ pages at the time of writing this article and each page has 40 posts or articles on it as can be shown by the image below.
Next step will show you how to extract data from multiple pages of the web page into excel.

Step 3:Extract Data from Multiple Web Pages into Excel

Using the import.io online tool you can extract data from 20 web pages maximum.Go to the bottom right corner of the import.io online tool page and click “Download CSV” to save the extracted data from those 20 pages into Excel.
Note:Using the import.io desktop application you can extract an unlimited number of pages and pin point only the data you want to extract.Check out this tutorial on how to use the desktop application.
Once you click “Download CSV” the following pop up window will appear.You can specify the number of pages you want to get data from up to a maximum of 20 pages then click “Go!”
You will need to Sign up for a free account to download that data as a CSV, or save it as an API.If you save it as an API you can go back to the API later to extract new data if the web page is updated without the need to repeat the steps we have done so far.Also, you can use the API for integration into other platforms.
Below image shows 20 rows out of 800 rows of data extracted from the 20 pages of the web page.

Conclusion

The online tool doesn’t offer much flexibility than the desktop application.For example, you can not extract more than 20 pages and you can not pin point the type of data you want to extract.For a more advanced tutorial on how to use the desktop application, you can check out this tutorial I created earlier.

Source URL : http://nocodewebscraping.com/extract-multiple-web-pages-data-into-excel/

Friday, 8 July 2016

ECJ clarifies Database Directive scope in screen scraping case

EC on the legal protection of databases (Database Directive) in a case concerning the extraction of data from a third party’s website by means of automated systems or software for commercial purposes (so called 'screen scraping').

Flight data extracted

The case, Ryanair Ltd vs. PR Aviation BV, C-30/14, is of interest to a range of companies such as price comparison websites. It stemmed from  Dutch company PR Aviation operation of a website where consumers can search through flight data of low-cost airlines  (including Ryanair), compare prices and, on payment of a commission, book a flight. The relevant flight data is extracted from third-parties’ websites by means of ‘screen scraping’ practices.

Ryanair claimed that PR Aviation’s activity:

• amounted to infringement of copyright (relating to the structure and architecture of the database) and of the so-called sui generis database right (i.e. the right granted to the ‘maker’ of the database where certain investments have been made to obtain, verify, or present the contents of a database) under the Netherlands law implementing the Database Directive;

• constituted breach of contract. In this respect, Ryanair claimed that a contract existed with PR Aviation for the use of its website. Access to the latter requires acceptance, by clicking a box, of the airline’s general terms and conditions which, amongst others, prohibit unauthorized ‘screen scraping’ practices for commercial purposes.

Ryanair asked Dutch courts to prohibit the infringement and order damages. In recent years the company has been engaged in several legal cases against web scrapers across Europe.

The Local Court, Utrecht, and the Court of Appeals of Amsterdam dismissed Ryanair’s claims on different grounds. The Court of Appeals, in particular, cited PR Aviation’s screen scraping of Ryanair’s website as amounting to a “normal use” of said website within the meaning of the lawful user exceptions under Sections 6 and 8 of the Database Directive, which cannot be derogated by contract (Section 15).

Ryanair appealed

Ryanair appealed the decision before the Netherlands Supreme Court (Hoge Raad der Nederlanden), which decided to refer the following question to the ECJ for a preliminary ruling: “Does the application of [Directive 96/9] also extend to online databases which are not protected by copyright on the basis of Chapter II of said directive or by a sui generis right on the basis of Chapter III, in the sense that the freedom to use such databases through the (whether or not analogous) application of Article[s] 6(1) and 8, in conjunction with Article 15 [of Directive 96/9] may not be limited contractually?.”

The ECJ’s ruling

The ECJ (without the need of the opinion of the advocate general) ruled that the Database Directive is not applicable to databases which are not protected either by copyright or by the sui generis database right. Therefore, exceptions to restricted acts set forth by Sections 6 and 8 of the Directive do not prevent the database owner from establishing contractual limitations on its use by third parties. In other words, restrictions to the freedom to contract set forth by the Database Directive do not apply in cases of unprotected databases. Whether Ryanair’s website may be entitled to copyright or sui generis database right protection needs to be determined by the competent national court.

The ECJ’s decision is not particularly striking from a legal standpoint. Yet, it could have a significant impact on the business model of price comparison websites, aggregators, and similar businesses. Owners of databases that could not rely on intellectual property protection may contractually prevent extraction and use (“scraping”) of content from their online databases. Thus, unprotected databases could receive greater protection than the one granted by IP law.

Antitrust implications

However, the lawfulness of contractual restrictions prohibiting access and reuse of data through screen scraping practices should be assessed under an antitrust perspective. In this respect, in 2013 the Court of Milan ruled that Ryanair’s refusal to grant access to its database to the online travel agency Viaggiare S.r.l. amounted to an abuse of dominant position in the downstream market of information and intermediation on flights (decision of June 4, 2013 Viaggiare S.r.l. vs Ryanair Ltd). Indeed, a balance should be struck between the need to compensate the efforts and investments made by the creator of the database with the interest of third parties to be granted with access to information (especially in those cases where the latter are not entitled to copyright protection).

Additionally, web scraping triggers other issues which have not been considered by the ECJ’s ruling. These include, but are not limited to trademark law (i.e., whether the use of a company’s names/logos by the web scraper without consent may amount to trademark infringement), data protection (e.g., in case the scraping involves personal data), or unfair competition.


Source URL :http://yellowpagesdatascraping.blogspot.in/2015/07/ecj-clarifies-database-directive-scope.html