Friday, 3 July 2015

Mobile app developers “duped” into distributing data-scraping malware: NICTA

The surge in mobile malware has led many to condemn developers' poor security practices, yet recent NICTA research suggests that – even though data-stealing is ubiquitous among both paid and free Android applications – many mobile application developers are in fact being “duped” into incorporating data-stealing routines into their applications.

A methodical analysis of Android applications and source code found that all of the top 100 paid and non-paid apps in Australia were collecting personal information, with 60 percent of the apps incorporating some sort of tracking library and 20 percent of the apps featuring more than three different tracking libraries.

While many have blamed developers for their poor security, NICTA mobile systems research group leader, Aruna Seneviratne, who leads the organisation's Networks Research Group, told CSO Australia that many tracking libraries were inadvertently added when developers incorporated third-party libraries into their mobile apps.

“In most cases app developers just use third-party libraries and don't know what's in them,” he said. “They're not being malicious for the sake of being malicious; they are just being duped into doing a thing that collects a lot of information.”

 And collect they do. Apps analysed by the team – whose paper 'early detection of spam mobile apps' was accepted for presentation at the recent WWW 2015 conference in Florence, Italy – were siphoning all kinds of personal information off of users' mobile devices, often sending it to enlarge what have become massive databases of personal preferences and behavioural modeling.

“It's amazing how much information each of those apps collects,” he said, “and the scary thing is that most of them actually go to a small number of sources – which means these guys can actually infer a lot of information about you. They have a very good idea of who you are and what you're doing – and they are cross-matching the information they collect.”

Ever more-clever data-siphoning routines were making data collection richer all the time, with many Android apps now being designed with libraries that collect information about nearby Wi-Fi access points and can correctly extrapolate the user's location 90 percent of the time.

Read more: The week in security: Android apps collecting your location data, home routers hit by drive-by malware

Seneviratne blamed Google's relatively lax app-approval process for the proliferation of such apps, which join the malware-laden apps that by the team's figures account for around 3 percent of all Google Play Store apps.

Recognising that developers are often as clueless as users about the extent of the data collection going on, the team has proposed an app-rating system that will give consumers a better idea of what they're enabling by downloading and installing a particular app.

A basic prototype has already been developed and a pilot site is expected to be up and running by the fourth quarter of this year. The service, which rates apps on criteria such as privacy and security, will be available to third parties as a Web service that Seneviratne hopes will eventually help it gain traction on app-rating and other sites.

Read more: Surveillance laws driving companies to limit data collection, developers to boost security

“We've been working to come up with a scheme that is similar to the energy-ratings system that you have for electrical appliances,” he said, noting that the site will also seek to boost developers' security awareness by correlating app ratings “to let consumers know they can download an alternate app that has the same functionality but a higher security rating”.

Israeli developer-tools firm Checkmarx has taken its own approach to improving developers' security skills, recently learning extensive lessons as hackers worked to manipulate its Game of Hacks security application – which is now under development to be sold to large corporates for developer training and testing.

This article is brought to you by Enex TestLab, content directors for CSO Australia.

Read more: The week in security: Budget flags encryption troubles, cross-government IAM

Feeling social? Follow us on Twitter and LinkedIn Now!

Read More:

    Victorian Commissioner for Privacy and Data Protection sorts sheep from the goats

    Better than email: VISA launches FireEye threat intel platform for merchants

Source: http://www.cso.com.au/article/576533/mobile-app-developers-duped-into-distributing-data-scraping-malware-nicta/

Thursday, 25 June 2015

Data Scraping - Enjoy the Appeal of the Hand Scraped Flooring

Hand scraped flooring is appreciated for the character it brings into the home. This style of flooring relies on hand scraped planks of wood and not the precise milled boards. The irregularities in the planks provide a certain degree of charm and help to create a more unique feature in the home.

Distressed vs. Hand scraped

There are two types of flooring in the market that have an aged and unique charm with a non perfect finish. However, there is a significant difference in the process used to manufacture the planks. The more standard distresses flooring is cut on a factory production line. The grooves, scratches, dents, or other irregularities in these planks are part of the manufacturing process and achieved by rolling or pressed the wood onto a patterned surface.

The real hand scraped planks are made by craftsmen and they work on each plant individually. By using this working technique, there is complete certainty that each plank will be unique in appearance.

Scraping the planks

The hand scraping process on the highest-quality planks is completed by the trained carpenter or craftsmen who will produce a high-quality end product and take great care in their workmanship. It can benefit to ask the supplier of the flooring to see who completes the work.

Beside the well scraped lumber, there are also those planks that have been bought from the less than desirable sources. This is caused by the increased demand for this type of flooring. At the lower end of the market the unskilled workers are used and the end results aren't so impressive.

The high-quality plank has the distinctive look that feels and functions perfectly well as solid flooring, while the low-quality work can appear quite ugly and cheap.

Even though it might cost a little bit more, it benefits to source the hardwood floor dealers that rely on the skilled workers to complete the scraping process.

Buying the right lumber

Once a genuine supplier is found, it is necessary to determine the finer aspects of the wooden flooring. This hand scraped flooring is available in several hardwoods, such as oak, cherry, hickory, and walnut. Plus, it comes in many different sizes and widths. A further aspect relates to the finish with darker colored woods more effective at highlighting the character of the scraped boards. This makes the shadows and lines appear more prominent once the planks have been installed at home.

Why not visit Bellacerafloors.com for the latest collection of luxury floor materials, including the Handscraped Hardwood Flooring.

Source: http://ezinearticles.com/?Enjoy-the-Appeal-of-the-Hand-Scraped-Flooring&id=8995784

Saturday, 20 June 2015

Rvest: easy web scraping with R

Rvest is new package that makes it easy to scrape (or harvest) data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces. Install it with:

install.packages("rvest")

rvest in action

To see rvest in action, imagine we’d like to scrape some information about The Lego Movie from IMDB. We start by downloading and parsing the file with html():

library(rvest)

lego_movie <- html("http://www.imdb.com/title/tt1490017/")

To extract the rating, we start with selectorgadget to figure out which css selector matches the data we want: strong span. (If you haven’t heard of selectorgadget, make sure to read vignette("selectorgadget") – it’s the easiest way to determine which selector extracts the data that you’re interested in.) We use html_node() to find the first node that matches that selector, extract its contents with html_text(), and convert it to numeric with as.numeric():

lego_movie %>%

  html_node("strong span") %>%
  html_text() %>%
  as.numeric()

#> [1] 7.9

We use a similar process to extract the cast, using html_nodes() to find all nodes that match the selector:

lego_movie %>%

  html_nodes("#titleCast .itemprop span") %>%
  html_text()

#>  [1] "Will Arnett"     "Elizabeth Banks" "Craig Berry"   

#>  [4] "Alison Brie"     "David Burrows"   "Anthony Daniels"

#>  [7] "Charlie Day"     "Amanda Farinos"  "Keith Ferguson"

#> [10] "Will Ferrell"    "Will Forte"      "Dave Franco"   

#> [13] "Morgan Freeman"  "Todd Hansen"     "Jonah Hill"

The titles and authors of recent message board postings are stored in a the third table on the page. We can use html_node() and [[ to find it, then coerce it to a data frame with html_table():

lego_movie %>%

  html_nodes("table") %>%
  .[[3]] %>%
  html_table()

#>                                              X 1            NA

#> 1 this movie is very very deep and philosophical   mrdoctor524

#> 2 This got an 8.0 and Wizard of Oz got an 8.1...  marr-justinm

#> 3                         Discouraging Building?       Laestig

#> 4                              LEGO - the plural      neil-476

#> 5                                 Academy Awards   browncoatjw

#> 6                    what was the funniest part? actionjacksin

Other important functions

    If you prefer, you can use xpath selectors instead of css: html_nodes(doc, xpath = "//table//td")).

    Extract the tag names with html_tag(), text with html_text(), a single attribute with html_attr() or all attributes with html_attrs().

    Detect and repair text encoding problems with guess_encoding() and repair_encoding().
    Navigate around a website as if you’re in a browser with html_session(), jump_to(), follow_link(), back(), and forward(). Extract, modify and submit forms with html_form(), set_values() and submit_form(). (This is still a work in progress, so I’d love your feedback.)

To see these functions in action, check out package demos with demo(package = "rvest").

Source: http://www.r-bloggers.com/rvest-easy-web-scraping-with-r/

Monday, 8 June 2015

Web Scraping : Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Tuesday, 2 June 2015

Getting Data from the Web Scraping

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

•    Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

•    Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

•    Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.

What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.

Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.

What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

•    Badly formatted HTML code with little or no structural information e.g. older government websites.

•    Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

•    Session-based systems that use browser cookies to keep track of what the user has been doing.

•    A lack of complete item listings and possibilities for wildcard search.

•    Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.

Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.

How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.

The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

Figure 57. The International Atomic Energy Agency’s (IAEA) portal (news.iaea.org)

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

# Look for all rows in the table

# Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

import scraperwiki

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

doc_text = scraperwiki.scrape(url)

doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

•    Can you find the address for the link in each event’s title?

•    Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

•    ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

•    The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Friday, 29 May 2015

Web Scraping Services - A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

•    Collect data from real estate listing

•    Collecting retailer sites data on daily basis

•    Extracting offers and discounts from a website.

•    Scraping job posting.

•    Price monitoring with competitors.

•    Gathering leads from online business directories – directory scraping

•    Keywords research

•    Gathering targeted emails for email marketing – email scraping

•    And many more.

There are various techniques used for data gathering as listed below:

•    Human copy-and-paste – takes lot of time to finish when data is huge

•    Programming the Custom Web Scraper as per the needs.

•    Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

The web scraping is legal since the data is publicly and freely available on the Web. Smart WebTech can probably help you to achieve your scraping-based project goals. We would be more than happy to hear from you.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Tuesday, 26 May 2015

Endorsing web scraping

With more than 200 projects delivered, we stand firmly for new challenges every day. We have served above 60 clients and have won 86% of repeat business, as our main core is customer delight. Successive Softwares was approached by a client having a very exclusive set of requirements. For their project they required customised data mining, in real time to offer profitable information to their customers. Requirement stated scrapping of stock exchange data in real time so that end users can be eased in their marketing decisions. This posed as an ambitious task for us because it required processing of huge amount of data on a routine basis. We welcomed it as an event to evolve and do something aside of classic web application development.

We started with mock-ups, pursuing our very first step of IMPART Framework (Innovative Mock-up based Prototypes Analyzed to develop Reengineered Technology). Our team of experts thought of all the potential requirements with a flow and materialized it flawlessly into our mock up. It was a strenuous tasks but our excitement to do something which others still do not think of, filled our team with confidence and energy and things began to roll out perfectly. We presented our mock-up and statistics to the client as per our expectation client choose us, impressed with the efforts.

We started gathering requirements from client side and started to formulate design about the flow. The project required real time monitoring of stock exchange together with Prices, Market Turnover and then implement them into graphs. The front end part was an easy deal, we were already adept in playing with data the way required. The intractable task was to get the data. We researched and found that it can be achieved either with API or with Web Scarping and we moved with latter because of the limitations in API.

Web scraping is a compelling technique to get the required information straight out of the web page. Lack of documentation and not much forbearance forced us to make a slow start, but we kept all the requirements clear and new that we headed in the right direction.  We divided the scraping process into bits of different but related tasks. Firstly we needed to find the data which has to be captured, some of the problems faced were pagination and use of AJAX but with examination of endpoints in URL and the requests made when data is drawn, we surmounted these problems easily.

After targeting our data we focused on HTML parser which could extract data form all the targets. Using PHP we developed a parser extracting all the information and saving them in Database in a structured way.  After the required data present at our end we easily manipulated it into tables and charts and we used HIGHSTOCK for that. Entire Client side was developed in PHP with Zend frame work and we used MySQL 5.7 for server side.

During the whole development cycle our QA team insured we were delivering a quality product following all standards. We kept our client in the loop during the whole process keeping them informed about every step. Clients were also assured as they watched their project starting from scratch which developed into full fledge website. The process followed a strict time line releasing regular builds and implementing new improvements. We stood up to the expectation our client and delivered a product just as they visualized it to be.

Source: http://www.successivesoftwares.com/endorsing-web-scraping/

Monday, 25 May 2015

What you need to know about web scraping: How to understand, identify, and sometimes stop

NB: This is a gust article by Rami Essaid, co-founder and CEO of Distil Networks.

Here’s the thing about web scraping in the travel industry: everyone knows it exists but few know the details.

Details like how does web scraping happen and how will I know? Is web scraping just part of doing business online, or can it be stopped? And lastly, if web scraping can be stopped, should it always be stopped?

These questions and the challenge of web scraping are relevant to every player in the travel industry. Travel suppliers, OTAs and meta search sites are all being scraped. We have the data to prove it; over 30% of travel industry website visitors are web scrapers.

Google Analytics, and most other analytics tools do not automatically remove web scraper traffic, also called “bot” traffic, from your reports – so how would you know this non-human and potentially harmful traffic exists? You have to look for it.

This is a good time to note that I am CEO of a bot-blocking company called Distil Networks, and we serve the travel industry as well as digital publishers and eCommerce sites to protect against web scraping and data theft – we’re on a mission to make the web more secure.

So I am admittedly biased, but will do my best to provide an educational account of what we’ve learned to be true about web scraping in travel – and why this is an issue every travel company should at the very least be knowledgeable about.

Overall, I see an alarming lack of awareness around the prevalence of web scraping and bots in travel, and I see confusion around what to do about it. As we talk this through I’ll explain what these “bots” are, how to find them and how to manage them to better protect and leverage your travel business.

What are bots, web scrapers and site indexers? Which are good and which are bad?

The jargon around web scraping is confusing – bots, web scrapers, data extractors, price scrapers, site indexers and more – what’s the difference? Allow me to quickly clarify.

–> Bots: This is a general term that refers to non-human traffic, or robot traffic that is computer generated. Bots are essentially a line of code or a program that is created to perform specific tasks on a large scale.  Bots can include web scrapers, site indexers and fraud bots. Bots can be good or bad.

–> Web Scraper: (web harvesting or web data extraction) is a computer software technique of extracting information from websites (source, Wikipedia). Web scrapers are usually bad.

If your travel website is being scraped, it is most likely your competitors are collecting competitive intelligence on your prices. Some companies are even built to scrape and report on competitive price as a service. This is difficult to prove, but based on a recent Distil Networks study, prices seem to be main target.You can see more details of the study and infographic here.

One case study is Ryanair. They have been particularly unhappy about web scraping and won a lawsuit against a German company in 2008, incorporated Captcha in 2011 to stop new scrapers, and when Captcha wasn’t totally effective and Cheaptickets was still scraping, they took to the courts once again.

So Ryanair is doing what seems to be a consistent job of fending off web scrapers – at least after the scraping is performed. Unfortunately, the amount of time and energy that goes into identifying and stopping web scraping after the fact is very high, and usually this means the damage has been done.

This type of web scraping is bad because:

    Your competition is likely collecting your price data for competitive intelligence.

    Other travel companies are collecting your flights for resale without your consent.

    Identifying this type of web scraping requires a lot of time and energy, and stopping them generally requires a lot more.

Web scrapers are sometimes good

Sometimes a web scraper is a potential partner in disguise.

Meta search sites like Hipmunk sometimes get their start by scraping travel site data. Once they have enough data and enough traffic to be valuable they go to suppliers and OTAs with a partnership agreement. I’m naming Hipmunk because the Company is one of th+e few to fess up to site scraping, and one of the few who claim to have quickly stopped scraping when asked.

I’d wager that Hipmunk and others use(d) web scraping because it’s easy, and getting a decision maker at a major travel supplier on the phone is not easy, and finding legitimate channels to acquire supplier data is most definitely not easy.

I’m not saying you should allow this type of site scraping – you shouldn’t. But you should acknowledge the opportunity and create a proper channel for data sharing. And when you send your cease and desist notices to tell scrapers to stop their dirty work, also consider including a note for potential partners and indicate proper channels to request data access.

–> Site Indexer: Good.

Google, Bing and other search sites send site indexer bots all over the web to scour and prioritize content. You want to ensure your strategy includes site indexer access. Bing has long indexed travel suppliers and provided inventory links directly in search results, and recently Google has followed suit.

–> Fraud Bot: Always bad.

Fraud bots look for vulnerabilities and take advantage of your systems; these are the pesky and expensive hackers that game websites by falsely filling in forms, clicking ads, and looking for other vulnerabilities on your site. Reviews sections are a common attack vector for these types of bots.

How to identify and block bad bots and web scrapers

Now that you know the difference between good and bad web scrapers and bots, how do you identify them and how do you stop the bad ones? The first thing to do is incorporate bot-identification into your website security program. There are a number of ways to do this.

In-house

When building an in house solution, it is important to understand that fighting off bots is an arms race. Every day web scraping technology evolves and new bots are written. To have an effective solution, you need a dynamic strategy that is always adapting.

When considering in-house solutions, here are a few common tactics:

    CAPTCHAs – Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA), exist to ensure that user input has not been generated by a computer. This has been the most common method deployed because it is simple to integrate and can be effective, at least at first. The problem is that Captcha’s can be beaten with a little workand more importantly, they are a nuisance to end usersthat can lead to a loss of business.

    Rate Limiting- Advanced scraping utilities are very adept at mimicking normal browsing behavior but most hastily written scripts are not. Bots will follow links and make web requests at a much more frequent, and consistent, rate than normal human users. Limiting IP’s that make several requests per second would be able to catch basic bot behavior.

    IP Blacklists - Subscribing to lists of known botnets & anonymous proxies and uploading them to your firewall access control list will give you a baseline of protection. A good number of scrapers employ botnets and Tor nodes to hide their true location and identity. Always maintain an active blacklist that contains the IP addresses of known scrapers and botnets as well as Tor nodes.

    Add-on Modules – Many companies already own hardware that offers some layer of security. Now, many of those hardware providers are also offering additional modules to try and combat bot attacks. As many companies move more of their services off premise, leveraging cloud hosting and CDN providers, the market share for this type of solution is shrinking.

    It is also important to note that these types of solutions are a good baseline but should not be expected to stop all bots. After all, this is not the core competency of the hardware you are buying, but a mere plugin.

Some example providers are:

    Impreva SecureSphere- Imperva offers Web Application Firewalls, or WAF’s. This is an appliance that applies a set of rules to an HTTP connection. Generally, these rules cover common attacks such as Cross-site Scripting (XSS) and SQL Injection. By customizing the rules to your application, many attacks can be identified and blocked. The effort to perform this customization can be significant and needs to be maintained as the application is modified.

    F5 – ASM – F5 offers many modules on their BigIP load balancers, one of which is the ASM. This module adds WAF functionality directly into the load balancer. Additionally, F5 has added policy-based web application security protection.

Software-as-a-service

There are website security software options that include, and sometimes specialize in web scraping protection. This type of solution, from my perspective, is the most effective path.

The SaaS model allows someone else to manage the problem for you and respond with more efficiency even as new threats evolve.  Again, I’m admittedly biased as I co-founded Distil Networks.

When shopping for a SaaS solution to protect against web scraping, you should consider some of the following factors:

•    Does the provider update new threats and rules in real time?

•    How does the solution block suspected non-human visitors?

•    Which types of proactive blocking techniques, such as code injections, does the provider deploy?

•    Which of the reactive techniques, such as rate limiting, are used?

•    Does the solution look at all of your traffic or a snapshot?

•    Can the solution block bots before they reach your infrastructure – and your data?

•    What kind of latency does this solution introduce?

I hope you now have a clearer understanding of web scraping and why it has become so prevalent in travel, and even more important, what you should do to protect and leverage these occurrences.

Source: http://www.tnooz.com/article/what-you-need-to-know-about-web-scraping-how-to-understand-identify-and-sometimes-stop/

Wednesday, 20 May 2015

The Features of the "Holographic Meridian Scraping Therapy"

1. Systematic nature: Brief introduction to the knowledge of viscera, meridians and points in traditional Chinese medicine, theory of holographic diagnosis and treatment; preliminary discussion of the treatment and health care mechanism of scraping therapy; systemat­ic introduction to the concrete methods of the holographic meridian scraping therapy; enumerating a host of therapeutic methods of scraping for disorders in both Chinese and Western medicine to em­body a combination of disease differentiation and syndrome differen­tiation; and summarizing the health care scraping methods. It is a practical handbook of gua sha.

2. Scientific: Applying the theories of Chinese and Western medicine to explain the health care and treatment mechanism and clinical applications of scraping therapy; introducing in detail the practical manipulations, items for attention, and indications and contraindications of the scraping therapy. Here are introduced repre­sentative diseases in different clinical departments, for which scrap­ing therapy has a better curative effect and the therapeutic methods of scraping for these diseases. Stress is placed on disease differentia­tion in Western medicine and syndrome differentiation in Chinese medicine, which should be combined in practical application.

Although there are more than 140,000 kinds of disease known to modem medicine, all diseases are related to dysfunction of the 14 meridians and internal organs, according to traditional Chinese med­icine. The object of scraping therapy is to correct the disharmony in the meridians and internal organs to recover the normal bodily func­tions. Thus, the scraping of a set of meridian points can be used to treat many diseases. In the section on clinical application only about 100 kinds of common diseases are discussed, although the actual number is much more than that. For easy reference the "Index of Diseases and Symptoms" is appended at the back of the book.

3. Practical: Using simple language and plenty of pictures and diagrams to guarantee that readers can easily leam, memorize and apply the principles of scraping therapy. As long as they master the methods explained in Chapter Three, readers without any medical knowledge can apply scraping therapy to themselves or others, with reference to the pictures in Chapters Four and Five. Besides scraping therapy, herbal treatment for each disease or syndrome is explained and may be used in combination with the scraping techniques.

Referring to the Holographic Meridian Hand Diagnosis and pic­tures at the back of the book will enhance accuracy of diagnosis and increase the effectiveness of scraping therapy.

Since the first publication and distribution of the Chinese edition of the book in July 1995, it has been welcomed by both medical specialists and lay people. In March 1996 this book was republished and adopted as a textbook by the School for Advanced Studies of Traditional Chinese Medicine affiliated to the Institute of the Acu­puncture and Moxibustion of the China Academy of Traditional Chi­nese Medicine.

In order to bring this health care method to more and more peo­ple and to make traditional Chinese medicine better appreciated They have modified and replenished this book in the spirit of constant im­provement. They hope that they may make a contribution to the health care of mankind with this natural therapy which has no side-effects and causes no pollution.

They hope that the Holographic Meridian Scraping Therapy can help the health and happiness of more and more families in the world.

Source: http://ezinearticles.com/?The-Features-of-the-Holographic-Meridian-Scraping-Therapy&id=5005031

Wednesday, 6 May 2015

Web Scraping Services Are Important Tools For Knowledge

Data extraction and web scraping techniques are important tools to find relevant data and information for personal or business use. Many companies, self-employed to copy and paste data from web pages. This process is very reliable, but very expensive as it is a waste of time and effort to get results. This is because the data collected and spent less resources and time required to collect these data are compared.

At present, several mining companies and their websites effective web scraping technique specifically for the thousands of pages of information developed culture can be traced. The information from a CSV file, database, XML file, or any other source with the required format is alameda. understanding of correlations and patterns in the data, so that policies can be designed to assist decision making. The information can also be stored for future reference.

The following are some common examples of data extraction process:

In order to rule through a government portal, citizens who are reliable for a given survey name removed.

Competitive pricing and data products include scraping websites

To access the web site or web design Stock download the videos and photos of scratching

Automatic Data Collection

It regularly collects data on a regular basis. Automated data collection techniques are very important because they find the company’s customer trends and market trends to help. By determining market trends, it is possible to understand customer behavior and predict the likelihood of the data will change.

The following are some examples of automated data collection:

Monitoring of special hourly rates for stocks

collects daily mortgage rates from various financial institutions

on a regular basis is necessary to check the weather

By using web scraping services, you can extract all data related to your business. Then analyzed the data to a spreadsheet or database can be downloaded and compared. Storing data in a database or in a required format and interpretation of the correlations to understand and makes it easier to identify hidden patterns.

Data extraction services, it is possible pricing, email, databases, profile data, and consistently to competitors for information about the data. Different techniques and processes designed to collect and analyze data, and has developed over time. Web Scraping for business processes that have beaten the market recently is one. It is a process from various sources such as websites and databases with large amounts of data provides.

Some of the most common methods used to scrape web crawling, text, fun, DOM analysis and include matching expression. After the process is only analyzers, HTML pages or meaning can be achieved through annotations. There are many different ways of scaling data, but more importantly is working toward the same goal. The main purpose of using web scraping service to retrieve and compile data in databases and web sites. In the business world is to remain relevant to the business process.

The central question about the relevance of web scraping contact. The process is relevant to the business world? The answer is yes. The fact that it is used by large companies in the world and many awards speaks derivatives.

Source: http://www.selfgrowth.com/articles/web-scraping-services-are-important-tools-for-knowledge

Thursday, 30 April 2015

Customized Web Data Extraction Solutions for Business

As you begin leading your business on the path to success, competitive analysis forms a major part of your homework. You have already mobilized your efforts in finding the appropriate website data scrapping tool that will help you to collect relevant data from competitive websites and shape them up into useable information. There is however a need to look for a customized approach in your search for Data Extraction tools in order to leverage its benefits in the best possible way.

Off-the-shelf Tools Impede Data Extraction

 In the current scenario, Internet Technologies are evolving in abundance. Every organization leverages this development and builds their websites using a different programming language and technology. Off-the-shelf Website Data extraction tools are unable to interpret this difference. They fail to understand the data elements that need to be captured and end up in gathering data without any change in the software source codes.

As a result of this incapability in their technology, off-the-shelf solutions often deliver unclean, incomplete and also inaccurate data. Developers need to contribute a humungous effort in cleaning up and structuring the data to make it useable. However, despite the time-consuming activity, data seldom metamorphoses into the desired information. Also the personnel dealing with the clean-up process needs to have sufficient technical expertise in order to participate in the activities. The endeavor however results in an impediment to the whole process of data extraction leaving you thirsting for the required information to augment business growth.

Understanding how Web Extraction tools work

Web Scrapping tools are designed to extract data from the web automatically. They are usually small pieces of code written using programming languages such as Python, Ruby or PHP depending upon the expertise of the community building it. There are however several single-click models available which tends to make life easier for non-technical personnel.

The biggest challenge faced by a successful web extractor tool is to know how to tackle the right page and the right elements on that page in order to extract the desired information. Consequently, a web extractor needs to be designed to understand the anatomy of a web page in order to accomplish its task successfully. It should be designed to interpret the meaning of HTML elements like , table rows () within those tables, and table data (<td>) cells within those rows in order to extract the exact data. It will also be interfacing with the

element which are blocks of text and know how to extract the desired information from it.

Customized Solutions for your business

 Customized Solutions are provided by most Data Scraping experts. These software's help to minimize the cumbersome effort of writing elaborate codes to successfully accomplish the feat of data extraction. They are designed to seamlessly search competitive websites,identify relevant data elements, and extract appropriate data that will be useful for your business. Owing to their focused approach, these tools provide clean and accurate data thereby eliminating the need to waste valuable time and effort in any clean-up effort.

Most customized data extraction tools are also capable of delivering the extracted data in customized formats like XML or CSV. It also stores data in local databases like Microsoft Access, MySQL, or Microsoft SQL.

Customized Data scraping solutions therefore help you take accurate and informed decisions in order to define effective business strategies.

Source: http://scraping-solutions.blogspot.in/2014_07_01_archive.html 

Tuesday, 28 April 2015

Benefits of Scraping Data from Real Estate Website

With so much of growth in the recent times in real estate industry, it is likely that companies would want to create something different or use another method, so as to get desired benefits. Thus, it is best to go with the technological advancements and create real estate websites to get an edge over others in the industry. And to get all the information regarding website content, one can opt for real estate data scraping methods.

About real estate website scraping

Internet has become an important part of our daily lives and in industry marketing procedures too. With the use of website scraping one can easily scrape real estate listing from various websites. One just needs the help of experts and with proper software and tools; they can easily collect all the relevant real estate data from the required real estate websites and make a structured file containing the information. With internet becoming a valid platform for information and data submitted by numerous sources from around the globe, it is necessary to gather them all in one place for companies. In this way, the company can know what it lacks and work upon their strategies so as to gain profit and get to the top of the business world by taking one step at a time.

Uses of real estate website scraping

With proper use of website scraping one can collect and scrape the real estate listings which can help the company in the real estate market area. One can draw the attention of potential customers by designing the company strategies in such a way as contemplating the changing trends in the real estate global arena. All this is done with the help of the data collected from various real estate websites. With the help of proper website, one can collect the data and these get updated whenever new information gets into the web portal. In this way the company is kept updated about the various changes happening around the global market and thus, ensure in making plans regarding the company. This way one can plan ahead and take steps that can lead to the company gaining profits in future.

Thus, with the help of proper real estate website scraping one can be sure of getting all the information regarding real estate market. This way one can work upon making the company move as per the market trends and get a stronghold in real estate business.

Source: https://3idatascraping.wordpress.com/2013/09/25/benefit-of-scraping-data-from-real-estate-website/

Saturday, 25 April 2015

Scraping the Bottom of the Barrel - The Perils of Online Article Marketing

Many online article marketers so desperately wish to succeed, they want to dump corporate life and work for themselves out of their home. They decide they are going to create an online money making website. Therefore, they look around to see what everyone else is doing, and watch the methods others use to attract online buyers, and then they mimic their marketing, their strategies, and their business models.

Still, if you are copying what other people (less ethical people) are doing in online article marketing, those which are scraping the bottom of the barrel and using false advertising and misrepresentations, then all you are really doing is perpetuating distrust on the Internet. Therefore, you are hurting everyone, including people like me. You must realize that people like me don't appreciate that.

Let me give you a few examples of some of the things going on out there, thing that are being done by people who are ethically challenged. Far too many people write articles and then on their byline they send the Internet surfer or reader of the article to a website that has a squeeze page. The squeeze page has no real information on it, rather it asks for their name and e-mail address.

If the would-be Internet surfer is unwise enough to type in their name and email address they will be spammed by e-mail, receiving various hard-sell marketing pieces. Then, if the Internet Surfer does decide to put in their e-mail address, the website grants them access and then takes them to the page with information about what they are selling, or their online marketing "make you a millionaire" scheme.

Generally, these are five page sales letters, with tons of testimonials of people you've never heard of, and may not actually exist, and all sorts of unsubstantiated earnings claims of how much money you will make if you give them $39.35 by way of PayPal, for this limited offer "Now!" And they will send you an E-book with a strategic plan of how you can duplicate what they are doing. The reality is whatever they are doing is questionable to begin with.

If you are going to do online article marketing please don't scrape the bottom of the barrel, there's just too much competition down there from what I can see. Please consider all this.

Source: http://ezinearticles.com/?Scraping-the-Bottom-of-the-Barrel---The-Perils-of-Online-Article-Marketing&id=2710103

Wednesday, 22 April 2015

How to Properly Scrape Windows During The Cleaning Process

Removing ordinary dirt such as dust, fingerprints, and oil from windows seem simple enough. However, sometimes, you may find stubborn caked-on dirt or debris on your windows that cannot be removed by standard window cleaning techniques such as scrubbing or using a squeegee. The best way to remove caked-on dirt on your windows is to scrape it off. Nonetheless, you have to be extra careful when you are scraping your windows, because they can be easily scratched and damaged. Here are a number of rules that you need to follow when you are scraping windows.

Rule No. 1: It is recommended that you use a professional window scraper to remove caked-on dirt and debris from your windows. This type of scraper is specially made for use on glass, and it comes with certain features that can prevent scratching and other kinds of damage.

Rule No. 2: It is important to inspect your window scraper before using it. Take a look at the blade of the scraper and make sure that it is not rusted. Also, it must not be bent or chipped off at the corners. If you are not certain whether the blade is in a good enough condition, you should just play it safe by using a new blade.

Rule No. 3: When you are working with a window scraper, always use forward plow-like scraping motions. Scrape forward and lift the scraper off the glass, and then scrape forward again. Try not to slide the scraper backwards, because you may trap debris under the blade when you do so. Consequently, the scraper may scratch the glass.

Rule No. 4: Be extra cautious when you are using a window scraper on tempered glass. Tempered glass may have raised imperfections, which make it more vulnerable to scratches. To find out if the window that you are scraping is made of tempered glass, you have to look for a label in one of its corners.

Window Scraping Procedures

Before you start scraping, you have to wet your window with soapy water first. Then, find out how the window scraper works by testing it in a corner. Scrape on the same spot three or four times in forward motion. If you find that the scraper is moving smoothly and not scratching the glass, you can continue to work on the rest of the window. On the other hand, if you feel as if the scraper is sliding on sandpaper, you have to stop scraping. This indicates that the glass may be flawed and have raised imperfections, and scraping will result in scratches.

After you have ascertained that it is safe to scrape your window, start working along the edges. It is best that you start scraping from the middle of an edge, moving towards the corners. Work in a one or two inch pattern, until all the edges of the glass are properly scraped. After that, scrape the rest of the window in a straight pattern of four or five inches, working from top to bottom. If you find that the window is beginning to dry while you are working, wet it with soapy water again.

Source: http://ezinearticles.com/?How-to-Properly-Scrape-Windows-During-The-Cleaning-Process&id=6592930

Saturday, 18 April 2015

What is HTML Scraping and how it works

There are many reasons why there may be a requirement to pull data or information from other sites, and usually the process begins after checking whether the site has an official API. There are very few people who are aware about the presence of structured data that is supported by every website automatically. We are basically talking about pulling data right from the HTML, also referred to as HTML scraping. This is an awesome way of gleaning data and information from third party websites.

Any webpage content that can be viewed can be scraped without any trouble. If there is any way provided by the website to the browser of the visitor to download content and use the same in a highly structured manner, in that case, accessing of the content programmatically is possible. HTML scraping works in an amazing manner.

Before indulging in HTML scraping, one can inspect the browser for network traffic. Site owners have a couple of tricks up their sleeve to thwart this access, but majority of them can be worked around.

Before moving on to how HTML scraping works, we must understand the reasons behind the same. Why is scraping needed? Once you get a satisfactory answer to this question, you can start looking for RSS or API feeds or various other traditional structured data forms. It is significant to understand that when compared with APIs, websites are more significant.

The most important advantage of the same is the maintenance of their websites where a lot of visitors visit rather than safeguarding structured data feeds. With Tweeter, the same has been publicly seen when it clamps down on the developer ecosystem. Many times, API feeds change or move without any prior warning. Many times, it can also be a deliberate attempt, but mostly, such issues or problems erupt as there is no authority or an organization that maintains or takes care of the structured data. It is rarely noticed, if the same gets severely mangled or goes offline. In case the website has certain issues or the website no longer works, the problem is more in the form of a ball in your court requiring dealing with the same without losing any time. api-comic-image

Rate limiting is another factor that needs a lot of thinking and in case of public websites, it virtually doesn’t exist. Besides some occasional sign up pages or captchas, many business websites fail to create and built defenses against any unwarranted automated access. Many times, a single website can be scraped for four hours straight without anyone noticing. There are chances that you would not be viewed under DDOS attack unless concurrent requests are being made by you. You will be seen just as an avid visitor or an enthusiast in the logs, that too, in case anyone is looking.

Another factor in HTML scraping is that one can easily access any website anonymously. Behavior tracking can be done with a few ways by the administrator of the website and this turns out to be beneficial if you want to privately gather the data. Many times, registration is imperative with APIs in order to get key and with any request being sent, this key also needs to be sent. But, in case of simple and straightforward HTTP requests, the visitor can stay anonymous besides cookies and IP address, which can again be spoofed.

The availability of HTML scraping is universal and there is no need to wait for the opening of the site for an API or for contacting anyone in the organization. One simply needs to spend some time and browse websites at a leisurely pace until the data you want is available and then find out the basic patterns to access the same.

Now you need to don a hat of a professional scraper and simply dive in. Initially, it may take some time to work up figuring out the way the data have been structured and the way it can be accessed just as we read APIs. If there is no documentation unlike APIs, you need to be a little more smart about it and use clever tricks.

Some of the most used tricks are

Data Fetching


The first thing that is required is data fetching. Find endpoints to begin with, that is the URLs that can help in returning the data that is required. If you are pretty sure about the data and the way it should be structured so as to match your requirements, you will require a particular subset for the same and later you can indulge in site browsing using the navigation tools.

GET Parameter

The URLs must be paid attention to and see the way it changes as you indulge in clicking between the sections and the way they divide into various subsections. Before starting, the other option that can be used is to straight away go to the search functionality of the site. Certain terms can be typed and the URL needs to be focused again for watching the changes on the basis of what is being searched. A GET parameter will be probably seen like q which changes on the basis of the search term used by you. Other GET parameters that are not being used can be removed from the URL until only the ones that are needed are left for data loading. Before a query string, there must always be a “?” beginning.

Now the time has come when you would have started to come across the data that you would like to see and want to access, but sometimes, there may be certain pagination issues that require to be dealt with. Due to these issues, you may not be able to see the data in its entirety. Single requests are kept away by many APIs as well from database slamming. Many times, clicking the next page can add some offset parameter that helps in data visibility on the page. All these steps will help you succeed in HTML scraping.

Source: https://www.promptcloud.com/blog/what-is-html-scraping-and-how-it-works/

Tuesday, 7 April 2015

Thoughts on scraping SERPs and APIs

Google says that scraping keyword rankings is against their policy from what I've read. Bummer. We comprise a lot of reports and manual finding and entry was a pain. Enter Moz! We still manually check and compare, but it's nice having that tool. I'm confused now though about practices and getting SERPs in an automated way. Here are my questions

    Is it against policy to get SERPs from an automated method? If that is the case, isn't Moz breaking this policy with it's awesome keyword tracker?

    If it's not, and we wanted to grab that kind of data, how would we do it? Right now, Moz's API doesn't offer this data. I thought Raven Tools at one point offered this, but they don't now from what I've read. Are there any APIs out there that we can grab this data and do what we want with it? (let's day build our own dashboard)?

Thanks for any clarification and input!

Source: http://moz.com/community/q/thoughts-on-scraping-serps-and-apis

Friday, 27 March 2015

Make Your Business More Intelligent with Web Data Extraction services

Data extraction is that the most practiced technique which will assist you realizes the pertaining knowledge for your existing business or any personal use. Many times, we discover that experts’ copy and paste data manually from web content or transfer the complete web site that may be a waste of your time and energy.

Now with the new technique of Data extraction you'll crawl through hundreds and many web content so as to extract specific knowledge and at the very same time save this information or data within the following manner.
  •     CSV FILE
  •     XML FILE or Any other custom format for future use.

Below given are some instances of Data extraction process:

  •     Conduct a government portal, extracting names of voters for a survey
  •     Seek for competitor websites for product valuation and information on features
  •     Utilize web scraping to download images from a stock photography site for website design

How can Data Extraction serve you?

 You can extract data from any kind of websites like


Extract Data from any kind of Websites: Directories, Classified Websites, News Websites, Blogs, Articles, Job Portals, Search Engines, Ecommerce Websites, Social Media Websites and any kind of websites whose content can be accessible. Extract Emails, Contacts, Price/Rate, Features, Contact Names, Contact Details, Full Text, Live updates, ASINs, Meta Tags, Address, Phone, Fax, Latitude & Longitude, Images, Links, Reviews, Ratings, etc. Help in Data Collection, Competitor Analysis, Research, Business Intelligence, Social Media Trend analysis, Brand Monitoring, Lead Data Collection, Website & Competitor Web Monitoring, etc. Deliver Data in any Database, Excel, CSV, Access, Text, My SQL, SQL, Oracle, etc. and in any format Custom Services of Web Data Extraction as per client need one time Data Delivery or Continued/Scheduled Data Delivery

The next one is Website Data Scraping:

 Website Data Scraping is that method of extracting such information or data from web site by utilising specific software system program accessible from evidenced web site solely.

This extracted data may be utilised by somebody and for any functions as per their requirements; data extracted may be employed in totally different industries. There are a unit several corporations providing best website data scraping services.

It is one such field that has active developments and conjointly shares a standard objective that wants breakthrough within the following:
  •     Text Processing
  •     Semantic Understanding
  •     Artificial Intelligence
  •     Human Computer Interactions

There are several users or finish users, corporations and specialists that require info or information that's accessible in some or the opposite format. In such cases Web Data Extraction will tailor the necessity of extracting information from any tested supply and preserve the information on a selected destination.

The source platform contains:
  •     Excel
  •     CSV
  •     MySQL and
  •     Others

Websitedatascraping.com is enough capable to web data scraping, website data scraping, web scraping services, website scraping services, data scraping services, product information scraping and yellowpages data scraping.

Tuesday, 24 March 2015

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:

• Spider a government portal, extracting names of citizens for a survey

• Crawl competitor websites for product pricing and feature data

• Use web scraping to download images from a stock photography site for website design

Automated Data Collection


Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:

• Monitor price information for select stocks on hourly basis

• Collect mortgage rates from various financial firms on daily basis

• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Should you have any queries regarding Web Data extraction services, please feel free to contact us. We would strive to answer each of your queries in detail.

Source:http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Tuesday, 17 March 2015

Life’s Solutions through Web Scraping

Incredibly, there is no other time in human existence that personal data can be accessed as easily and quickly as it is in the present time. Sadly though, records about a person’s activities are kept without even his or her knowledge about them. It is then the act of web scraping that unearths what these are and puts them to commodities of priceless value and of great use.

On the brighter side, solutions about one’s life’s dilemmas can be acquired completely by retrieving the information entered online by every individual. Specifically, it would be more convenient these days to write a person’s biography; evaluate his or her health history; and trace his or her activities through data mining.

Biography

A person’s life story can be known and written about by gleaning through his or her online activities such as emails; purchase records; and every other recorded online presence he or she has made during his or her life time. The biography can be objective as well as subjective: objective in the sense that actual activities and concrete evidences are on record; and subjective in the sense that each activity or data can be analyzed and construed based on other related activities or based on the context where the information is taken or made.

A person’s emails, for instance, can reveal a lot about his or her major decisions and activities in his or her life time. These emails are like journals that directly and indirectly reveal a person’s unique behavior, personality, and preferences. In addition, what he or she exposes through these electronic messages can show the kind of person he or she has been through the different stages in his or her life. It would then be very interesting to discover the many changes in one’s life at specific points and be amazed at how one has matured or developed through the years. Moreover, the person may discover more about himself or herself if he or she would take the time to study his or her own electronic correspondence.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/lifes-solutions-web-scraping/

Monday, 16 March 2015

Why Outsourcing Data Mining Services is the Leading Business Trend

Businesses usually have huge volumes of raw data that remains unprocessed. Processing data results into information. A company’s hunt for valuable information ends when it outsources its data mining process to reputable and professional data mining companies. In this way a company is able to derive more clarity and accuracy in the decision making process.

It is important too note that information is critical to the growth of a business. With the internet you are offered flexible communication and good flow of data. It is a good idea to make the data that is available readily and in a workable format where it will be useful to a business. The filtered data is deemed important to the organization and the services can be used to increase profits, ameliorating overall risks and smooth work flow.

Data mining process must engage the sorting data process through the vast data amounts of data and acquire pertinent information. Data mining is usually undertaken by professional, financial and business analysts. Nowadays, there are many growing fields that require data extraction services.

When making decisions data mining plays an important role as it enables experts to make decisions quick and in a feasible manner. The information that is processed finds wide applications for decision making that relate to e-commerce, direct marketing, health care, telecommunications, customer relationship management, financial utilities and services.

The following are the data mining services that are commonly outsourced to the professional data mining companies:

•    Data congregation. This is the process of extracting data from different websites and web pages. The common processes involved here include web scraping and screen scraping services. The data congregated is then in put into databases.

•    Collecting of contact data. This is the process of searching and collecting of information concerning contacts from different websites.

•    E-commerce data. This is data about various online stores. The information collected includes the various products and prices offered. Other information that is collected is about discounts.

•    Competitors. Information about your business competitors is quite important as it helps a business to gauge itself against other businesses. In this way a company can use this information to re-design its marketing strategies and develop its own pricing matrix.

In this era where business is hugely impacted by globalization, handling data is becoming a headache. This is where outsourcing becomes quite profitable and important to your business. Huge savings in terms money, time and infrastructure can be realized when data mining projects are customized to suit exact needs of a customer.

There are many benefits accrued when outsourcing data mining services to professional companies. The following are some of benefits that are accrued from the outsourcing process:

•    Qualified and skilled technical staff. Data mining companies employ highly competent staffs who have a successful career in IT industry and data mining. With such personnel you are assured of quality information extracted from databases and websites.

•    Improved technology. These companies have invested huge resources in terms of software and technology so as to handle the information and data in a technological way.

•    Quick turnaround time. Your data is processed in an efficient way and information presented in a timely way. These companies are able to present data in a timely manner even in tight deadlines.

•    Cost-effective prices. Nowadays there are many companies dealing with web scraping and data mining. Due to competition, these companies offer quality services at competitive prices.

•    Data safety. Data is quite critical and should not leak to your competitors. These companies are using the latest technology in ensuring that your data is not stolen by other vendors.

•    Increased market coverage. These companies serve many businesses and organizations with different data needs. By outsourcing to them you are assured of expertise dealing with your data have wide market coverage.

Outsourcing enables a company to shift its focus to the core business operations and improve its overall productivity. In fact outsourcing can be considered as a wise choice for any business. Therefore outsourcing helps businesses in managing data effectively. In this way you will be able to achieve and generate more profits. When outsourcing, it is advisable that you only consider professional companies only so as to be assured of high quality services.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/216-why-outsourcing-data-mining-services-is-the-leading-business-trend/

Friday, 13 March 2015

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:


- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:


- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:


- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:


- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it
into a database.

Source:http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Monday, 9 March 2015

Online Retail - Mining for Gold

Online retailers live in an ever-changing environment, and the ability to stay competitive is the difference between doing well and doing nothing. In today's fast paced internet market place, if you aren't using web scraping, you are missing a key component to growing your business.

Data Mining

Data mining your competition's prices and services and making sure your prices and services are similar, or even lower, is what makes the difference. Why should your customer choose you if they can get the same product somewhere else for less? What data you collect and how often you update it is also another key ingredient to success.

Extract Website Data

Web scraping allows you to gather information from your competition and use it improve your position in the market. When you extract website data from your competitor's website, it allows you to conduct business from a position that doesn't involve guess work. The internet is an environment that is constantly being updated and changed. It is vital that you have the ability to have up-to-date information on what others in your market are doing. If you can't do this, you really can't compete.

Application of Information

When you know what your competitors are doing all the time, you can keep your business a little more competitive than they are. When you have information such as monthly and even weekly price variations in the market and what products and services are being offered, you can apply that information to your own pricing matrix and ensure a competitive edge in your market.

An Army of One

Web scraping gives you the ability to see what is going on in the market at all times. You can monitor just about anything you choose with a web scraping service. Many online retailers are very small operations and they don't have the resources to constantly monitor each competitor's website - so engaging a web scraping service is like having your own marketing and research team working for you night and day to keep tabs on them. You choose what it is you want to know, and your research team goes to work. Simple.

Staying Ahead of Trends

Having the ability to recognize trends is the key to any business, especially on the internet were information is so fluid. The business that can identify a trend quickly and take advantage of it will always stay one step ahead. That's why big corporations have teams dedicated to researching market trends and predictions. If you can see where something is going, you can always get ahead of it. That's what web scraping can help you do - identify those trends in your market so you can get in ahead of the pack.

A Helping Hand

Sometimes running your own online retail business can be a daunting and lonely ordeal. Even those that have a great deal of experience with the internet can feel lost at times. A web scraping service is a tool you can use to help yourself in such times. Web scraping is automated and precise, and it gives you the ability to have vital information delivered to you in a manner you can understand and use. It's one less thing to worry about - and the information you get from data mining is what every business owner actually should worry about - what the competition is doing? With a web scraping service, you can concern yourself with other things - like making more profits.

Source: http://ezinearticles.com/?Online-Retail---Mining-for-Gold&id=6531024